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CONTACT PROCESSES ON RANDOM GRAPHS WITH POWER
LAW DEGREE DISTRIBUTIONS HAVE CRITICAL VALUE 0

BY SHIRSHENDU CHATTERJEE AND RICK DURRETT1

Cornell University

If we consider the contact process with infection rate λ on a random
graph on n vertices with power law degree distributions, mean field calcula-
tions suggest that the critical value λc of the infection rate is positive if the
power α > 3. Physicists seem to regard this as an established fact, since the
result has recently been generalized to bipartite graphs by Gómez-Gardeñes
et al. [Proc. Natl. Acad. Sci. USA 105 (2008) 1399–1404]. Here, we show that
the critical value λc is zero for any value of α > 3, and the contact process
starting from all vertices infected, with a probability tending to 1 as n → ∞,
maintains a positive density of infected sites for time at least exp(n1−δ) for
any δ > 0. Using the last result, together with the contact process duality, we
can establish the existence of a quasi-stationary distribution in which a ran-
domly chosen vertex is occupied with probability ρ(λ). It is expected that
ρ(λ) ∼ Cλβ as λ → 0. Here we show that α − 1 ≤ β ≤ 2α − 3, and so β > 2
for α > 3. Thus even though the graph is locally tree-like, β does not take the
mean field critical value β = 1.

1. Introduction. In this paper we will study the contact process on random
graphs with a power-law degree distribution, i.e., for some constant α, the degree
of a typical vertex is k with probability pk ∼ Ck−α as k → ∞. Following New-
man, Strogatz and Watts (2001, 2002), we construct the random graph Gn on the
vertex set {1,2, . . . , n} having degree distribution p = {pk :k ≥ 0} as follows. Let
d1, . . . , dn be independent and have the distribution P(di = k) = pk . We condi-
tion on the event En = {d1 + · · · + dn is even} to have a valid degree sequence.
As P(En) → 1/2 as n → ∞, the conditioning will have a little effect on the dis-
tribution of di ’s. Having chosen the degree sequence (d1, d2, . . . , dn), we allocate
di many half-edges to the vertex i, and then pair those half-edges at random. We
also condition on the event that the graph is simple, i.e., it neither contains any
self-loop at some vertex, nor contains multiple edges between two vertices. It can
be shown [see e.g. Theorem 3.1.2 of Durrett (2007)] that if the degree distribution
p has finite second moment, i.e., if α > 3, the probability of the event that Gn is
simple has a positive limit as n → ∞, and hence the conditioning on this event
will not have much effect on the distribution of di’s.
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We will be concerned with epidemics that take place on these random graphs.
First consider the SIR (susceptible-infected-removed) model, in which sites begin
as susceptible, and after being infected they get removed, i.e., become immune to
further infection. In the simplest discrete-time formulation, an infected site x at
time n will always be removed at time n + 1 and for each susceptible neighbor y

at any time n, x will cause y to become infected at time n + 1 with probability p,
with all of the infection events being independent.

In this case the spreading of the epidemic is equivalent to percolation. To com-
pute the threshold pc for a large, i.e., O(n), epidemic to occur with positive prob-
ability, one notes that for a randomly chosen vertex x, the number of vertices at
distance m from x, Zm, is approximately a two-phase branching process in which
the number of first generation children has distribution p, but in the second and
subsequent generations the offspring distribution is the size biased distribution
q = {qk :k ≥ 0} satisfying

qk−1 = kpk

μ
, where μ = ∑

k

kpk.(1.1)

This occurs because vertices with degree k are k times as likely to be chosen for
connections, and the edge that brings us to the new vertex uses up one of its de-
grees. For more details on this and the facts that we will quote in the next para-
graph, see Chapter 3 of Durrett (2007).

With the above observation in hand, it is easy to compute the critical threshold
for the SIR model. Let ν be the mean of the size biased distribution,

ν = ∑
k

kqk.(1.2)

Suppose we start the infection at a randomly chosen vertex x. Now if Ym is
the number of sites at distance m from x that become infected, then EYm =
pμ(pν)m−1. So the epidemic is supercritical if and only if p > 1/ν. In particu-
lar, if pk ∼ Ck−α as k → ∞ and α ≤ 3, then ν = ∞ and pc = 0. Conversely if
α > 3 then ν < ∞ and pc = 1/ν > 0. Hence for the SIR epidemic model on the
random graph Gn with power-law degree distribution, there is a positive threshold
for the infection to survive if and only if the power α > 3.

We will study the continuous-time SIS (susceptible-infected-susceptible) model
and show that its behavior differs from that of the SIR model. In the SIS model,
at any time t each site x is either infected or healthy (but susceptible). We often
refer to the infected sites as occupied, and the healthy sites as vacant. We define
the functions {ζt : t ≥ 0} on the vertex set so that ζt (x) equals 0 or 1 depending on
whether the site x is healthy or infected at time t . An infected site becomes healthy
at rate 1 independent of other sites and is again susceptible to the disease, while
a susceptible site becomes infected at a rate λ times the number of its infected
neighbors. Harris (1974) introduced this model on the d-dimensional integer lattice
and named it the contact process. See Liggett (1999) for an account of most of the
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known results. We will make extensive use of the self-duality property property of
this process. If we let ξt ≡ {x : ζt (x) = 1} to be the set of infected sites at time t ,
we obtain a set-valued process. If we write ξA

t to denote the process with ξA
0 = A,

then the self-duality property says that

P(ξA
t ∩ B 	= ∅) = P(ξB

t ∩ A 	= ∅)(1.3)

for any two subsets A and B of vertices.
Pastor-Satorras and Vespignani (2001a, 2001b, 2002) have made an extensive

study of this model using mean-field methods. Their nonrigorous computations
suggest the following conjectures about λc the threshold for “prolonged persis-
tence” of the contact process:

• If α ≤ 3, then λc = 0.
• If 3 < α ≤ 4, then λc > 0 but the critical exponent β , which controls the rate at

which the equilibrium density of infected sites goes to 0, satisfies β > 1.
• If α > 4, then λc > 0 and the equilibrium density ∼ C(λ−λc) as λ ↓ λc, i.e. the

critical exponent β = 1.

Notice that the conjectured behavior of λc for the SIS model parallels the results
for pc in the SIR model quoted above.

Gómez-Gardeñes et al. (2008) have recently extended this calculation to the bi-
partite case, which they think of as a social network of sexual contacts between
men and women. They define the polynomial decay rates for degrees in the two
sexes to be γM and γF , and argue that the epidemic is supercritical when the trans-
mission rates for the two sexes satisfy

√
λMλF > λc =

√
〈k〉M 〈k〉F

〈k2〉F 〈k2〉M ,

where the angle brackets indicate expected value and k is shorthand for the degree
distribution. Here λc is positive when γM,γF > 3.

Our first goal is to show that λc = 0 for all α > 3. Our proof starts with the
following observation due to Berger et al. (2005). Here, we follow the formulation
in Lemma 4.8.2 of Durrett (2007).

LEMMA 1.1. Suppose G is a star graph with center 0 and leaves 1,2, . . . , k.
Let At be the set of vertices infected in the contact process at time t when A0 = {0}.
If kλ2 → ∞, then P(Aexp(kλ2/10) 	= ∅) → 1.

Based on results for the contact process on (Z modn) by Durrett and Liu (1988)
and Durrett and Schonmann (1988), and on (Z modn)d by Mountford (1993), it
is natural to conjecture that in the contact process on Gn, with probability tending
to 1 as n → ∞, the infection survives for time ≥ exp(cn) for some constant c.
It certainly cannot last longer, because the total number of edges is O(n), and so
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even if all sites are occupied at time 0, there is a constant c so that with probability
≥ exp(−cn) all sites will be vacant at time 1. Our next result falls a little short of
that goal.

THEOREM 1. Consider a Newman, Strogatz and Watts random graphs Gn on
the vertex set {1,2, . . . , n}, where the degrees di satisfy P(di = k) ∼ Ck−α as k →
∞ for some constant C and some α > 3, and P(di ≤ 2) = 0. Let {ξ1

t : t ≥ 0} denote
the contact process on the random graph Gn starting from all sites occupied, i.e.,
ξ1

0 = {1,2, . . . , n}. Then for any value of the infection rate λ > 0, there is a positive
constant p(λ) so that for any δ > 0

inf
t≤exp(n1−δ)

P

( |ξ1
t |
n

≥ p(λ)

)
→ 1 as n → ∞.

One could assume that ν > 1 and look at the process on the giant component,
but we would rather avoid this complication. The assumption P(di ≤ 2) = 0 is
convenient, because it implies the following.

LEMMA 1.2. Consider a Newman, Strogatz and Watts graphs, Gn, on n ver-
tices, where the degrees of the vertices, di , satisfy P(di ≤ 2) = 0, and the mean of
the size biased degree distribution ν < ∞. Then

P(Gn is connected) → 1 as n → ∞,

and if Dn is the diameter of Gn,

P
(
Dn > (1 + ε) logn/ logν

) → 0 for any ε > 0.

The size of the giant component in the graph is given by the nonextinction
probability of the two-phase branching process, so P(di ≤ 2) = 0 is needed to
have the size ∼ n. Intuitively, Lemma 1.2 is obvious because the worst case is the
random 3-regular graph, and in this case, the graph is not only connected and has
diameter ∼ (logn)/(log 2), see Sections 7.6 and 10.3 of Bollobás (2001), but the
probability of a Hamiltonian cycle tends to 1, see Section 9.3 of Janson, Luczak,
and Ruciński (2000). We have not been able to find a proof of Lemma 1.2 in the
literature, so we give one in Section 5. By comparing the growth of the cluster with
a branching process it is easy to show P(Dn < (1 − ε) logn/ logν) → 0 for any
ε > 0.

In a sense the main consequence of Theorem 1 is not new. Berger et al. (2005),
see also (2009), show that λc = 0 for a generalization of the Bárabasi–Albert model
in which each new point has m edges which are with probability β connected to a
vertex chosen uniformly at random and with probability 1 − β to a vertex chosen
with probability proportional to its degree. Theorem 2 in Cooper and Frieze (2003)
shows that such graphs have power law degree distributions with α = 1 + 2/(1 −
β), so these examples have α ∈ [3,∞) and λc = 0.
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Having acknowledged the previous work of BBCS, it should be noted that (i)
our result applies to a large class of power law graphs that have a different struc-
ture; and (ii) the BBCS proof yields a lower bound on the persistence time of
exp(cn1/(α−1)) compared to our exp(n1−δ). Our improved bound on the survival
times relies only on the power law degree distribution and the fact that the diameter
is bounded by C logn, so it also applies to graphs BBCS consider.

Theorem 1 shows that the fraction of infected sites in the graph Gn is bounded
away from zero for a time longer than exp(n1/2). So using self-duality we can now
define a quasi-stationary measure ξ1∞ on the subsets of {1,2, . . . , n} as follows.
For any subset of vertices A, P(ξ1∞ ∩ A 	= ∅) ≡ P(ξA

exp(n1/2)
	= ∅). Let Xn be

uniformly distributed on {1,2, . . . , n} and let ρn(λ) = P(Xn ∈ ξ1∞). Berger et al.
(2005) show that for the contact process on their preferential attachment graphs,
there are positive, finite constants so that

bλC ≤ ρn(λ) ≤ Bλc.

In contrast, we get reasonably good numerical bounds on the critical exponent.

THEOREM 2. Suppose α > 3. There is a λ0 > 0 so that if 0 < λ < λ0 and
0 < δ < 1, then there exists two constants c(α, δ) and C(α, δ) so that as n → ∞

P
(
cλ1+(α−2)(2+δ) ≤ ρn(λ) ≤ Cλ1+(α−2)(1−δ)) → 1.

When α is close to 3 and δ is small, the powers in the lower and upper bounds
are close to 3 and 2. The ratio of the two powers is ≤ (2 + δ)/(1 − δ) ≈ 2 when δ

is small.
The intuition behind the lower bound is that if the infection starts from a vertex

of degree d(x) ≥ (10/λ)2+δ , then it survives for a long time with a probability
bounded away from 0. The density of such points is Cλ(2+δ)(α−1), but we can
improve the bound to the one given by looking at neighbors of these vertices,
which have density Cλ(2+δ)(α−2) and will infect their large degree neighbor with
probability ≥ cλ.

For the upper bound we show that if m(α, δ) is large enough and the infection
starts from a vertex x such that there is no vertex of degree ≥ λ−(1−δ) within
distance m from x, then its survival is very unlikely. To get the extra factor of λ

we note that the first event must be a birth. Based on the proof of Lemma 1.1, we
expect that survival is unlikely if there is no nearby vertex of degree ≥ λ−2 and
hence the lower bound gives the critical exponent.

It is natural to speculate that the density of the quasi-stationary measure
ρn(λ) → ρ(λ) as n → ∞. By the heuristics for the computation of λc in the SIR
model, it is natural to guess that, when α > 2, ρ(λ) is the expected probability of
weak survival for the contact process on a tree generated by the two-phase branch-
ing process, starting with the origin occupied.
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Here the phrase ‘weak survival’ refers to set of infected sites being not empty
for all times, in contrast to ‘strong survival’ where the origin is reinfected infinitely
often. As in the case of the contact process on the Bollobás–Chung small world
studied by Durrett and Jung (2007), it is the weak survival critical value that is the
threshold for prolonged persistence on the finite graph.

Sketch of the proof of Theorem 1. The remainder of the paper is devoted to
proofs. Let V ε

n be the set of vertices in the graph Gn with degree at least nε . We
call the points in V ε

n stars. We say that a star of degree k is hot if at least λk/4 of
its neighbors are infected and is lit if at least λk/10 of its neighbors are infected.
Our first step, taken in Lemma 2.2, is to improve the proof of Lemma 1.1 to show
that a hot star will remain lit for time exp(cnε) with high probability.

To keep the system going for a long time, we cannot rely on just one star. There
are O(n1−ε(α−1)) stars in this graph which has diameter O(logn). If one star goes
out, presence of a lit star can make it hot again within a time 2nε/3 with probability
at least n−b. See Lemmas 2.3 and 2.4 for this. Lemma 2.6 shows that a lit star gets
hot within 2 exp(nε/3) units of time with probability

≥ 1 − 5 exp(−λ2nε/3/16),

and Lemma 2.5 shows that a hot star eventually succeeds to make a nonlit star hot
within exp(nε/2) units of time with probability

≥ 1 − 8e−λ2nε/80.

Using these estimates, we can show that the number of lit stars dominates a random
walk with a strong positive drift, and hence more than 3/4’s of the collection will
stay lit for a time O(exp(n1−αε)). See Proposition 1 at the end of Section 2 for the
argument.

To get a lower bound on the density of infected sites, first we bound the proba-
bility of the event that the dual process, starting from a vertex of degree (10/λ)2+δ ,
reaches more than 3/4’s of the stars. We do this in two steps. In the first step (see
Lemma 3.2) we get a lower bound for the probability of the dual process reaching
one of the stars. To do this, we consider a chain of events in which we reach vertices
with degree (10/λ)k+δ for k ≥ 2 sequentially. In the second step (see Lemma 3.3)
we again use a comparison with random walk to show that, with probability tend-
ing to 1, the dual process, starting from any lit star, will light up more than 3/4’s
of the stars. Then we show that the above events are asymptotically uncorrelated,
and use a second moment argument to complete the proof of Theorem 1 and the
lower bound for the density in Theorem 2.

OPEN PROBLEM. Improve the bounds in Theorem 2 and extend the result to
α > 1.
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When 2 < α < 3 the size biased distribution has infinite mean. Chung and Lu
(2002, 2003) obtained bounds on the diameter in this case, and later van der Hof-
stadt, Hooghiemstra and Zamenski (2007) showed if Hn is the distance between 1
and 2 then

Hn ∼ 2 log logn

− log(α − 2)
.

When 1 < α < 2 the size-biased distribution has infinite mass. van der Esker et
al. (2005) have shown in this case

lim
n→∞P(Hn = 2) = lim

n→∞ 1 − P(Hn = 3) = p ∈ (0,1)

so the graph is very small.
All of the results about the persistence of infection at stars in Section 2 are

valid for any α, since they only rely on properties of the contact process on a star
graph and an upper bound on the diameter. The results in Section 3, rely on the
existence of the size biased distribution and hence are restricted to α > 2. The
proof of the lower bound should be extendible to that case, but the proof of the
upper bound given in Section 4 relies heavily on the size-biased distribution having
finite mean. When 1 < α < 2, the size-biased distribution does not exist and the
situation changes drastically. We guess that in this case ρn(λ) = O(λ).

2. Persistence of infection at stars. Let ε > 0 and let V ε
n be the set of vertices

in our graph Gn with degree at least nε . We call these vertices stars. We say that a
vertex of degree k is hot if it has at least L = λk/4 infected neighbors and we call
it lit if it has at least 0.4L = λk/10 infected neighbors. We will show that if ε is
small, then in the contact process starting from all vertices occupied, most of the
stars in V ε

n will remain lit for time O(exp(n1−αε)).
We begin with a slight improvement of Lemma 1.1 which gives a numerical

estimate of the failure probability, but before that we need two simple estimates.

LEMMA 2.1. If 0 ≤ x ≤ a ≤ 1 then ex ≤ 1 + (1 + a)x and e−x ≤ 1 − (1 −
2a/3)x.

PROOF. Using the series expansion for ex

ex ≤ 1 + x + ax

2

(
1 + 1

2
+

(
1

2

)2

+ · · ·
)
,

e−x ≤ 1 − x + ax

2

(
1 +

(
1

2

)2

+
(

1

2

)4

+ · · ·
)

and summing the geometric series gives the result. �
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LEMMA 2.2. Let G be a star graph with center 0 and leaves 1,2, . . . , k. Let
At be the set of vertices infected in the contact process at time t . Suppose λ ≤ 1
and λ2k ≥ 50. Let L = λk/4 and let T = exp(kλ2/80)/4L. Let PL,i denote the
probability when at time 0 the center is at state i and L leaves are infected. Then

PL,i

(
inf
t≤T

|At | ≤ 0.4L
)

≤ 7e−λ2k/80 for i = 0,1.

PROOF. Write the state of the system as (m,n) where m is the number of
infected leaves and n = 1 if the center is infected and 0 otherwise. To reduce to
a one-dimensional chain, we will concentrate on the first coordinate. When the
state is (m,0) with m > 0, the next event will occur after exponential time with
mean 1/(mλ + m), and the probability that it will be the reinfection of the center
is λ/(λ + 1). So the number of leaf infections N that will die while the center is 0
has a shifted geometric distribution with success probability λ/(λ + 1), i.e.,

P(N = j) =
(

1

λ + 1

)j

· λ

λ + 1
for j ≥ 0.

Let NL be the realization of N when the state of the system is (L,0). Then NL

will be more than 0.1L with probability

PL,0(NL > 0.1L) ≤ (1 + λ)−0.1L ≤ e−λL/20 = e−λ2k/80.(2.1)

Here we use the inequality 1 + λ ≥ eλ/2. If NL ≤ 0.1L, then there will be at least
0.9L infected leaves when the center is infected.

The next step is to modify the chain so that the infection rate is 0 when the num-
ber of infected leaves is L = λk/4 or greater. In this case the number of infected
leaves ≥ Yt where

at rate

Yt → Yt − 1, λk/4,

Yt → Yt + 1, 3λk/4 for Yt < L,

Yt → Yt − N, 1.

To bound the survival time of this chain, we will estimate the probability that
starting from 0.8L it will return to 0.4L before hitting L. During this time Yt is a
random walk that jumps at rate λk + 1. Let X be the change in the random walk in
one step. Then

X =
⎧⎨
⎩

−1, with probability (λk/4)/(λk + 1),
+1, with probability (3λk/4)/(λk + 1),
−N, with probability 1/(λk + 1),
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and so

EeθX = eθ · 3

4
· λk

λk + 1
+ e−θ · 1

4
· λk

λk + 1

+ 1

λk + 1

∞∑
j=0

e−θj

(
1

λ + 1

)j

· λ

λ + 1
.

If e−θ /(λ + 1) < 1, the third term on the right is

λ

λk + 1
· 1

1 + λ − e−θ
.

If we pick θ < 0 so that e−θ = 1 + λ/2, then

EeθX = λk

λk + 1

(
1

1 + λ/2
· 3

4
+ (1 + λ/2) · 1

4
+ 2

λk

)
.

Since 1/(1 + x) < 1 − x + x2 for 0 < x < 1,

1

1 + λ/2
· 3

4
+ (1 + λ/2) · 1

4
+ 2

λk
− 1 <

(
−λ

2
+ λ2

4

)
3

4
+ λ

8
+ 2

λk

< −3λ

16
+ λ

8
+ 2

λk
,

where in the last inequality, we have used λ < 1. Since we have assumed λ2k ≥ 50,
the right-hand side is < 0.

To estimate the hitting probability we note that if φ(x) = exp(θx) and Y0 ≥
0.6L, then φ(Yt ) is a supermartingale until it hits L. Let q be the probability that
Yt hits the interval (−∞,0.4L] before returning to L. Since θ < 0, we have φ(x) ≥
φ(0.4L) for x ≤ 0.4L. So using the optional stopping theorem we have

qφ(0.4L) + (1 − q)φ(L) ≤ φ(0.8L),

which implies that

q ≤ φ(0.8L)/φ(0.4L) = exp(0.4θL) ≤ e−λ2k/40,

as e−θ = 1 + λ/2 ≥ eλ/4 when λ/4 < 1/2 (sum the series for ex ).
At this point we have estimated the probability that the chain started at a point

≥ 0.8L will go to L before going below 0.4L. When the chain is at L, the time
until the next jump is exponential with mean 1/(L + 1) ≥ 1/2L. The probability
that the jump takes us below 0.8L is (since 1 + λ ≥ eλ/2)

≤ (1 + λ)−0.2L ≤ e−λL/10 = e−λ2k/40.

Thus the probability that the chain fails to return to L, M = eλ2k/80 times before
going below 0.4L is

≤ 2e−λ2k/80.
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Using Chebyshev’s inequality on the sum, SM of M exponentials with mean 1 (and
hence variance 1),

P(SM < M/2) ≤ 4/M.

Multiplying by 1/2L we see that the total time, TM of the first M excursions
satisfies

P(TM < M/4L) ≤ 4e−λ2k/80.

Combining this with the previous estimate on the probability of having fewer than
M returns and the error probability in (2.1) proves the desired result. �

Thus Lemma 2.2 shows that a hot star will remain lit for a long time with prob-
ability very close to 1. Our next step is to investigate the process of transferring the
infection from one star to another. The first step in doing that is to estimate what
happens when only the center of the star infected.

LEMMA 2.3. Let G be a star graph with center 0 and leaves 1,2, . . . , k. Let
0 < λ < 1, δ > 0 and suppose λ2+δk ≥ 10. Again let Pl,i denote the probability
when at time 0 the center is in state i and l leaves are infected. Let τ0 be the first
time 0 becomes healthy, and let Tj be the first time the number of infected leaves
equals j . If L = λk/4, γ = δ/(4 + 2δ), and K = λk1−γ /4, then for k ≥ k0(δ)

P0,1(TK > τ0) ≤ 2/kγ ,

PK,1(T0 < TL) ≤ exp(−λ2k1−γ /16) ≤ 1/kγ ,

E0,1(TL | TL < ∞) ≤ 2.

Combining the first two inequalities P0,1(TL < ∞) ≥ 1 − 2/kγ , and using
Markov’s inequality, if we can infect a vertex of degree at least k such that
k ≥ k0(δ) and λ2+δk > 10, then with probability ≥ 1 − 5/kγ the vertex gets hot
within the next kγ units of time.

PROOF OF LEMMA 2.3. Note that τ0 ∼ exp(1), and for any t ≤ τ0, the leaves
independently becomes healthy at rate 1 and infected at rate λ. Let p0(t) is the
probability that leaf j is infected at time t when the central vertex of the star has
remained infected for all times s ≤ t . p0(0) = 0 and

dp0(t)

dt
= −p0(t) + (

1 − p0(t)
)
λ = λ − (λ + 1)p0(t).

So solving gives p0(t) = ∫ t
0 λe−(λ+1)(t−s) ds = λ

λ+1(1 − e−(λ+1)t ). From this it
follows that

P0,1(TK < τ0) ≥ P
(
Binomial(k,p0(k

−γ )) > K
)
P(τ0 > k−γ ).(2.2)
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Now if kγ > 8/3, (λ + 1)k−γ ≤ 3/4 and it follows from Lemma 2.1 that

p0(k
−γ ) ≥ λk−γ /2.

Writing p = p0(k
−γ ) to simplify formulas, if θ > 0

P
(
Binomial(k,p) ≤ K

) ≤ eθK(1 − p + pe−θ )k.

Since log(1 + x) ≤ x the right-hand side is

≤ exp
(

θλk1−γ

4
+ (e−θ − 1)

λk1−γ

2

)
.

Taking θ = 1/2 and using Lemma 2.1 to conclude e−1/2 − 1 ≤ −1/3, the above is

≤ exp(−λk1−γ /24) ≤ exp(−k1/2−γ /8),

since λ2k ≥ 9. Using this in (2.2), the right-hand side is

≥ (
1 − exp(−k1/2−γ /8)

)
(1 − k−γ ) ≥ 1 − 2/kγ ,

if k1/2−γ ≥ 8γ log k.
Using the supermartingale from the proof of Lemma 2.2, if q = PK,1(T0 < TL),

then we have

q · 1 + (1 − q)eθL ≤ eθK,

and so q ≤ eθK ≤ e−λK/4. In the last step we have used eθ = 1/(1+λ/2) ≤ e−λ/4,
which comes from Lemma 2.1. Filling in the value of K , e−λK/4 = e−λ2k1−γ /16.
Now

λ2k1−γ = (λ2+δk)2/(2+δ)k1−γ−2/(2+δ) ≥ 102/(2+δ)kδ/(4+2δ).

So if kδ/(4+2δ) > 16 · 10−2/(2+δ)γ log k, then e−λK/4 ≤ 1/kγ .
To bound the time we use the lower bound random walk Yt from Lemma 2.2.

EN = 1/λ, so

EYt =
(

λk

2
− 1

λ

)
t =

(
λ2k − 2

2λ

)
t.

Let T Y
L be the hitting time of L for the random walk Yt . Using the optional stopping

theorem for the martingale Yt − (λ2k − 2)t/2λ and the bounded stopping time
T Y

L ∧ t we get

EYT Y
L ∧t −

(
λ2k − 2

2λ

)
E(T Y

L ∧ t) = EY0 = 0.

Since EYT Y
L ∧t ≤ L = λk/4, it follows that

E(T Y
L ∧ t) ≤

(
2λ

λ2k − 2

)
L = λ2k/2

λ2k − 2
= 1

2 − 4/λ2k
≤ 1,
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as by our assumption λ2k ≥ 4. Letting t → ∞ we have ET Y
L ≤ 1. Since Yt is a

lower bound for the number of infected leaves, TL1[TL<∞] ≤ T Y
L . Hence

E0,1(TL|TL < ∞) = E0,1(TL1[TL<∞])
P0,1(TL < ∞)

≤ E0,1T
Y
L

P0,1(TK < τ0)PK,1(TL < T0)
≤ 1

1/2
= 2

for large k. �

To transfer infection from one vertex to another we use the following lemma.

LEMMA 2.4. Let v0, v1, . . . , vm be a path in the graph and suppose that v0 is
infected at time 0. Then the probability that vm will become infected by time m is
≥ (e−1(1 − e−λ)e−1)m.

PROOF. The first factor is the probability that the infection at v0 lasts for
time 1, the second the probability that v0 infects v1 by time 1, and the third the
probability that the infection at v1 remains until time 1. Iterating this m times
brings the infection from 0 to m. �

When the diameter of the graph is ≤ 2 logn, the probability in Lemma 2.4 is
≥ n−b for some b ∈ (1/2,∞), and the time required is ≤ 2 logn. Combining this
with Lemma 2.3 (with k = nε and γ = 1/3) shows that if n is large, then with
probability ≥ Cn−b we can use one hot star to make another star hot within time
2nε/3. Using Lemma 2.2 and trying repeatedly gives the following lemma.

LEMMA 2.5. Let s1 and s2 be two stars in V ε
n and suppose that s1 is hot at

time 0. Then, for large n, s2 will be hot by time T = exp(nε/2) with probability

≥ 1 − 8e−λ2nε/80.

PROOF. If n is large, Lemma 2.2 shows that s1 remains lit for T units of
time with probability ≥ 1 − 7e−λ2nε/80. Let tn = 2nε/3 and consider the discrete
time points tn,2tn, . . . . At all of these time points we can think of a path starting
from an infected neighbor of s1 up to s2. Using one such path the infection gets
transmitted to s2 and it gets hot in 2nε/3 units of time with probability ≥ Cn−b for
some constant C. So s1 fails to make s2 hot by time T with probability

≤ (1 − Cn−b)T /tn ≤ exp(−Cn−bT /tn) ≤ exp(−λ2nε/80)

for large n. For the first inequality we use 1 − x ≤ e−x . Combining with the first
error probability in this proof, we get the result. �

Next we show that a lit star becomes hot with a high probability, and then helps
to make other nonlit stars lit.
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LEMMA 2.6. Let s be a star of V ε
n and suppose that s is lit at time 0. Then s

will be hot by time 2 exp(nε/3) with probability

≥ 1 − 5 exp(−λ2nε/3/16) if n is large.

PROOF. Since s is lit, it has at least λnε/10 infected neighbors at time 0. If s

itself is not infected at time 0, let N be the number of leaf infections that die out
before s gets infected. Using similar argument as in the beginning of the proof of
Lemma 2.2,

P(N = j) =
(

1

λ + 1

)j

· λ

λ + 1
for j ≥ 0,

which implies

P(N > λnε/20) ≤ (1 + λ)−λnε/20 ≤ e−λ2nε/40,

as 1 + λ > eλ/2 by Lemma 2.1. Also the time TM taken for M = λnε/20 leaf
infections to die out is a sum of M exponentials with mean at most 1/(λ + 1)M ≤
1/M . Now if n2ε/3 > 40/16, the above error probability is ≤ e−λ2nε/3/16.

Using Chebyshev’s inequality on the sum, SM of M exponentials with mean 1
(and hence variance 1), we see that if exp(nε/3) ≥ 2, i.e., nε/3 > log 2

P
(
SM > M exp(nε/3)

) ≤ 1

M(exp(nε/3) − 1)2

≤ 4

M exp(2nε/3)
≤ exp(−λ2nε/3/16),

where in the final inequality we have used M > 4, i.e., nε > 80/λ, and λ2/16 < 2.
Multiplying by 1/M we see that the total time, TM , satisfies

P
(
TM > exp(nε/3)

) ≤ exp(−λ2nε/3/16).

Combining these two error probabilities gives that s will be infected along with at
least λnε/20 infected neighbors within exp(nε/3) units of time with error proba-
bility

≤ 2 exp(−λ2nε/3/16).(2.3)

Now λnε/20 ≥ λnε/3/4, when n2ε/3 > 5. So if s is infected and has at least λnε/20
infected neighbors, then using the second inequality of Lemma 2.3 (with γ = 2/3
and k = nε), s becomes hot with error probability

≤ exp(−λ2nε/3/16).

Finally using Markov’s inequality and the third inequality of Lemma 2.3, the time
Ts taken by s to get hot, after it became infected, is more than T = exp(nε/3) with
probability

≤ 2 exp(−nε/3) ≤ 2 exp(−λ2nε/3/16),
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as λ < 1. Combining all these error probabilities proves the lemma. �

We now use Lemmas 2.5, 2.6 and 2.2 to prove that if the contact process starts
from all sites infected, then for a long time at least 3/4’s of the stars will be lit.

PROPOSITION 1. Let I ε
n,t be the set of stars in V ε

n which are lit at time t in
the contact process {ξ1

t : t ≥ 0} on Gn. Let tn = 2 exp(nε/2) and Mn = exp(n1−αε).
Then there is a stopping time Tn such that Tn ≥ Mn · tn and

P
(|I ε

n,Tn
| ≤ (3/4)|V ε

n |) ≤ exp(−Cnε).

PROOF. Let αn = |V ε
n |. Clearly |I ε

n,0| = αn. We will estimate the probability
that starting from (7/8)αn lit stars, the number goes below (3/4)αn before reaching
αn. Define the stopping times τis’ and σis’ as follows. Let τ0 = σ0 = 0 and for
i ≥ 0 let

τi+1 ≡ inf{t > τi + σitn : |I ε
n,t | = (7/8)αn},

σi+1 ≡ min
{
s ∈ N : |I ε

n,τi+1+s·tn | /∈ (
(3/4)αn,αn

)}
.

We need to look at time lags that are multiples of tn in the definition of σi because
in our worst nightmare (which is undoubtedly a paranoid delusion) all the lit stars
of degree k ≥ nε at time τi+1 have exactly 0.1k infected neighbors.

Lemma 2.6 implies that a lit star of V ε
n gets hot within time 2 exp(nε/3) ≤

exp(nε/2) (for large n) with probability ≥ 1−5 exp(−λ2nε/3/16). Combining with
Lemma 2.2 gives that a lit star at time 0 gets hot by time tn/2 and remains lit at
time tn with probability ≥ 1 − 6 exp(−λ2nε/3/16) for large n. Now if |I ε

n,t | < αn

for some t , then the number of lit stars will increase at time t + tn with probability
≥ P(A ∩ B), where

• A: All the lit stars will get hot by tn/2 units of time, and be lit for time tn.
• B: A nonlit star will become hot by time tn/2 in presence of another hot star,

and remain lit for another tn/2 units of time.

Now using the above argument P(A) ≥ 1 − 6n exp(−λ2nε/3/16), as there are at
most n stars. Combining Lemmas 2.5 and 2.2 gives P(B) ≥ 1−9 exp(−λ2nε/80).
So P(A∩B) ≥ 1 − exp(−nε/4) for large n. Using the stopping times |I ε

n,τi+r·tn | ≥
Wr for r ≤ σi , where {Wr : r ≥ 0} is a discrete time random walk satisfying

Wr → Wr − 1 with probability exp(−nε/4),
(2.4)

Wr → Wr + 1 with probability 1 − exp(−nε/4),

and W0 = (7/8)αn. Now θWr is a martingale where

θ = exp(−nε/4)

1 − exp(−nε/4)
< exp(−nε/4/2).(2.5)
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If q is the probability that Wr goes below (3/4)αn before hitting αn, then applying
the optional stopping theorem

q · θ(3/4)αn + (1 − q) · θαn ≤ θ(7/8)αn,

which implies

q ≤ θ(αn/8) ≤ exp
(−Cn1−(α−1)ε),

as αn ∼ Cn1−(α−1)ε for some constant C. So the probability that the random walk
fails to return to αn at least Mn = exp(n1−αε) times before going below (3/4)αn

is ≤ exp(−Cnε). Now if

K = min{i ≥ 1 : |I ε
n,τi+σi ·tn | ≤ (3/4)αn},

the coupling with the random walk will imply P(K ≤ Mn) ≤ exp(−Cnε), and
hence for Tn ≡ τMn + σMn · tn

P
(|I ε

n,Tn
| ≤ (3/4)|V ε

n |) ≤ exp(−Cnε).

As σi ≥ 1 for all i, by our construction Tn ≥ Mn · tn, and we get the result. �

So the infection persists for time longer than exp(n1−αε) in the stars of V ε
n .

3. Density of infected stars. Proposition 1 implies that if the contact process
starts with all vertices infected, most of the stars remain lit even after exp(n1−αε)

units of time. In this section we will show that the density of infected stars is
bounded away from 0 and we will find a lower bound for the density. We start
with the following lemma about the growth of clusters in the random graph Gn,
when we expose the neighbors of a vertex one at a time. For more details on this
procedure see Section 3.2 of Durrett (2007).

LEMMA 3.1. Suppose 0 < δ ≤ 1/8. Let A be the event that the two clusters,
starting from 1 and 2 respectively, intersect before their sizes grow to nδ . Then

P(A) ≤ Cn−(1/4−δ).

PROOF. If d1, . . . , dn are the degrees of the vertices, then

P
(

max
1≤i≤n

di > n3/(2α−2)
)

≤ n · P (
d1 > n3/(2α−2)) ≤ c/

√
n(3.1)

for some constant c. Suppose all the degrees are at most n3/(2α−2). Suppose R1
and R2 are the clusters starting from 1 and 2 up to size nδ . Let B be the event that
R1 contains a vertex of degree ≥ n1/(2α−2). Let en be the sum of degrees of all
those vertices with degree ≥ n1/(2α−2). While growing R1 the probability that a
vertex of degree ≥ n1/(2α−2) will be included on any step is

≤ en∑n
i=1 di − nδ+3/(2α−2)

≡ βn.
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Since the size biased distribution is qk ∼ Ck−(α−1) as k → ∞,
∑

s≥k qs ∼
Ck−(α−2) as k → ∞, and we have en ∼ Cn1−(α−2)/(2α−2) and hence βn ∼
Cn−(α−2)/(2α−2) as n → ∞. So for large n βn ≤ c1n

−1/4 for some constant c1,
when α > 3. Thus

P(Bc) ≥ 1 − c1/n1/4−δ.

If Bc occurs, all the degrees of the vertices of R1 are at most n1/(2α−2). In that
case, while growing R2 the probability of choosing one vertex from R1 is

≤ nδ+1/(2α−2)∑n
i=1 di − nδ+3/(2α−2)

≤ c2/n1−δ−1/(2α−2).

So the conditional probability

P(Ac|Bc) ≥ (
1 − c2n

−(1−δ−1/(2α−2)))nδ ≥ 1 − c2/n1−2δ−1/(2α−2).

Hence combining these two

P(Ac) ≥ (1 − c1/n1/4−δ)
(
1 − c2/n1−2δ−1/(2α−2)) ≥ 1 − C1/n1/4−δ,

and that completes the proof. �

Lemma 3.1 will help us to show that in the dual contact process, staring from
any vertex of degree ≥ (10/λ)2+δ for some δ > 0, the infection reaches a star of
V ε

n , with probability bounded away from 0.

LEMMA 3.2. Let ξA
t be the contact process on Gn starting from ξA

0 = A.
Suppose 0 < ε < 1/20(α − 1). Then there are constants λ0 > 0, n0 < ∞, c0 =
c0(λ, ε) and pi > 0 independent of λ < λ0, n ≥ n0 and ε such that if T = nc0 , v2
is a vertex with degree d(v2) ≥ (10/λ)2+δ for some 0 < δ < 1 and v1 is a neighbor
of v2,

P
(
ξ

{v2}
T ∩ V ε

n

) ≥ p2, P
(
ξ

{v1}
T +1 ∩ V ε

n

) ≥ p1λ.

PROOF. The second conclusion follows immediately from the first, since the
probability that v1 will infect v2 before time 1, and that v2 will stay infected until
time 1 is

≥ λ

λ + 1

(
1 − e−(λ+1))e−1 ≥ cλ.

Let �m be the set of vertices in Gn of degree ≥ (10/λ)m+δ for m ≥ 2. Define
γ = δ

2(2+δ)
and

B = 2(α − 1) log(10/λ), u = (
e−1(1 − e−λ)e−1)−(B+1)

,

wn ≡ log(nε)/ log(10/λ) − δ, Tm = T 1
m + T 2

m,
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where T 1
m = (10/λ)(m+δ)γ , T 2

m = um, and we let nc0 = ∑wn

m=2 Tm.

Define E2 = {ξ {v2}
T2

∩�3 	= ∅} and for m ≥ 3, having defined E2, . . . ,Em−1, we
let

Em = {
ξ

{vm}
Tm

∩ �m+1 	= ∅
}

and vm ∈ ξ
{vm−1}
Tm−1

∩ �m.

Let Am be the event that the clusters of size (10/λ)(m+δ+1)(α−2) starting from two
neighbors of vm do not intersect and

F =
wn⋂

m=2

Am.

Since ε < 1/20(α − 1), the cluster size (10/λ)(m+δ+1)(α−2) is at most n1/10 for
m ≤ wn. So using Lemma 3.1 and the fact

(k
2

)
< k2,

P(F c) ≤
(

wn∑
m=2

(10/λ)2m+2δ

)
cn−(1/4−1/10)

≤ n2εcn−(1/4−1/10) < cn−(1/4−3/20) < 1/6

for large n.
Since each vertex has degree at least 3, if F occurs then by the choice of B the

neighborhood of radius Bm around vm will contain more than (10
λ

)(m+δ+1)(α−2)+m

vertices. Let Gm be the event that the neighborhood of radius Bm around vm in-
tersects �m+1. In the neighborhood of vm probability of having a vertex of �m+1
is at least c(λ/10)(m+δ+1)(α−2). Hence

P(Gc
m ∩ F) ≤ (

1 − c(λ/10)(m+δ+1)(α−2))(10/λ)m+(m+δ+1)(α−2)

≤ exp
(−(10/λ)m

)
.

If λ is small,
∑∞

m=2 exp(−(10/λ)m) ≤ 1/6.
On the intersection of F and Gm we have a vertex of �m+1 within radius Bm

of vm. Using Lemmas 2.2 and 2.3, in the contact process {ξ {vm}
t : t ≥ 0}, vm gets

hot at time T 1
m and remains lit till time Tm with error probability ≤ cλ(m+δ)γ for

small λ. If vm is lit, then Lemma 2.4 shows that vm fails to transfer the infection to
some vertex in �m+1 within time T 2

m with probability

≤ [
1 − (

e−1(1 − e−λ)e−1)Bm]T 2
m/(Bm)

≤ exp
[−(

e−1(1 − e−λ)e−1)−m
/(Bm)

] ≡ ηm,

where ≡ indicates we are making a definition, and hence P(Ec
mGmF) ≤

cλ(m+δ)γ + ηm. If λ is small
∑wm

m=2[cλ(m+δ)γ + ηm] ≤ 1/6, we can take p2 = 1/2
and the proof is complete. �
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Lemma 3.2 gives a lower bound on the probability that an infection starting from
a neighbor of a vertex of degree ≥ (10/λ)2+δ reaches a star. Lemma 2.3 shows that
if the infection reaches a star, then with probability tending to 1 the star gets hot
within nε/3 units of time. Combining these two we get the following.

PROPOSITION 2. Suppose 0 < ε < 1/20(α − 1). There are constants λ0 > 0,
n0 < ∞ c1 = c1(λ, ε) and p1 > 0, which does not depend on λ < λ0, n ≥ n0 and
ε, such that for any vertex v1 with a neighbor v2 of degree d(v2) ≥ (10/λ)2+δ

for some δ ∈ (0,1), and T = nc1 the probability that ξ
{v1}
T contains a hot star is

bounded below by p1λ.

Next we will show that if we start with one lit star, then after time exp(nε/2) at
least 3/4’s of the stars will be lit.

LEMMA 3.3. Let I ε
n,t be the set of stars which are lit at time t in the contact

process on Gn such that |I ε
n,0| = 1. Then for T ′ = exp(nε/2)

P
(|I ε

n,T ′ | < (3/4)|V ε
n |) ≤ 7 exp(−λ2nε/3/16).

PROOF. Let s1 be the lit star at time 0. As seen in Proposition 1, s1 remains
lit at time T ′ = exp(nε/2) with probability ≥ 1 − 6 exp(−λ2nε/3/16) for large n.
With probability ≥ Cn−b another star gets hot within time tn = 2nε/3 and remains
lit at time T ′. Using similar argument as in Lemma 2.5, the process fails to make
(3/4)|V ε

n | many stars lit by time T ′ with probability

≤ (3/4)|V ε
n |(1 − Cn−b)T

′/tn

≤ (3/4)|V ε
n | exp(−Cn−bT ′/tn) ≤ exp(−λ2nε/3/16),

as |V ε
n | = Cn1−(α−1)ε and 1 − x ≤ e−x . So combining with the earlier error prob-

ability we get the result. �

Now we are almost ready to prove our main result. However, we need one more
lemma that we will use in the proof of the theorem.

LEMMA 3.4. Let F and G be two events which involve exposing nδ many
vertices starting at 1 and 2 respectively for some 0 < δ ≤ 1/8. Then

|P(F ∩ G) − P(F)P (G)| ≤ Cn−(1/4−δ).

PROOF. Let R1 and R2 be the clusters for exposing nδ many vertices starting
from 1 and 2 respectively, and let A be the event that they intersect. Clearly

P(F ∩ G) ≤ P(A) + P(F ∩ G ∩ Ac)

= P(A) + P(F ∩ Ac)P (G ∩ Ac)

≤ P(A) + P(F)P (G).
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Using similar argument for Fc and G we get

|P(F ∩ G) − P(F)P (G)| ≤ P(A).

We estimate P(A) using Lemma 3.1. �

Lemma 3.4 shows that two events which involve exposing at most n1/8 vertices
starting from two different vertices are asymptotically uncorrelated. Now we give
the proof of the main theorem.

Proof of Theorem 1. Given δ > 0, choose ε = min{δ/α,1/20(α − 1)}. Let An

be the set of vertices in Gn with a neighbor of degree at least (10/λ)2+δ . Clearly
|An|/n → c0(λ/10)(2+δ)(α−2) as n → ∞ for some constant c0. Define the random
variables Yx, x ∈ An as Yx = 1 if the dual contact process starting from x can light
up a star of V ε

n and 0 otherwise. By Proposition 2, EYx ≥ p1λ for some constant
p1 > 0 and for any x ∈ An.

If we grow the cluster starting from x ∈ An and exposing one vertex at a time,
we can find a star on any step with probability at least cn−(α−2)ε . So with proba-
bility 1 − exp(−cnε), we can find a star of V ε

n within the exposure of at most nαε

vertices. So, with high probability, lighting a star up is an event involving at most
n(α+1)ε many vertices. As (α + 1)ε < 1/8, using Lemma 3.4, we can say

P(Yx = 1, Yz = 1) − P(Yx = 1)P (Yz = 1)

≤ (
1 − exp(−cnε)

)
Cn−(1/4−(α+1)ε) + exp(−cnε) ≡ θn.

Using our bound on the covariances,

var
( ∑

x∈An

Yx

)
≤ n +

(
n

2

)
θn,

and Chebyshev’s inequality gives

P

(∣∣∣∣ ∑
x∈An

(Yx − EYx)

∣∣∣∣ ≥ nγ

)
≤ n + (n

2

)
θn

n2γ 2 → 0 as n → ∞

for any γ > 0, since θn → 0 as n → ∞. Since EYx ≥ p1λ and |An|/n →
c0(λ/10)(2+δ)(α−2), if we take pl ≡ p1λ · c0(λ/10)(2+δ)(α−2)/2 then

lim
n→∞P

( ∑
x∈An

Yx ≥ npl

)
= 1.(3.2)

Now if Yx = 1, Proposition 2 says that the dual process starting from x

makes a star hot after T1 = nc1 units of time. Then by Lemma 3.3 within next
T2 = exp(nε/2) units of time the dual process lights up 75% of all the stars with
probability 1 − 7 exp(−λ2nε/3/16).
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Let I ε
n,t be the set of stars which are lit at time t in the contact process {ξ1

t : t ≥ 0}
and

T3 = inf{t > exp(n1−αε) : |I ε
n,t | ≥ (3/4)|V ε

n |}.
By Proposition 1, P(T3 < ∞) ≥ 1 − exp(−cnε). Let

S = {
S ⊂ {1,2, . . . , n} : ξ1

t = S ⇒ |I ε
n,t | ≥ (3/4)|V ε

n |}.
Using the Markov property and self-duality of the contact process we get the fol-
lowing inequality. For any subset B of the vertex set, and for the event Fn ≡ [T3 <

∞] we have

P [(ξ1
T1+T2+T3

⊃ B) ∩ Fn]
= ∑

S∈S
P(ξS

T1+T2
⊃ B)P (ξ1

T3
= S|Fn)P (Fn)

= ∑
S∈S

P
(
ξ

{x}
T1+T2

∩ S 	= ∅ ∀x ∈ B
)
P(ξ1

T3
= S|Fn)P (Fn)

≥ ∑
S∈S

P
(∣∣ξ {x}

T1+T2
∩ I ε

n,T3

∣∣ > (3/4)|V ε
n | ∀x ∈ B

)
P(ξ1

T3
= S|Fn)P (Fn)

≥ P(Yx = 1 ∀x ∈ B)
(
1 − 7|B| exp(−λ2nε/3/16)

)
P(Fn)

≥ P(Yx = 1 ∀x ∈ B)
(
1 − 2 exp(−cnε/4)

)
,

as |B| ≤ n and P(Fn) ≥ 1 − exp(−cnε). Hence for T = T1 + T2 + T3, combining
with (3.2) and using the attractiveness property of the contact process we conclude
that as n → ∞

inf
t≤T

P

( |ξ1
t |
n

> pl

)
= P

( |ξ1
T |
n

> pl

)
(3.3)

≥ P

(
ξ1
T ⊇ {x :Yx = 1}, ∑

x∈An

Yx ≥ npl

)
→ 1,

which completes the proof of Theorem 1, and proves the lower bound in Theo-
rem 2.

4. Upper bound in Theorem 2. For the upper bound, we will show that if
the infection starts from a vertex x with no vertex of degree > 1/λ1−δ nearby, it
has a very small chance to survive. To get the 1 in upper bound we need to use the
fact that first event in the contact process starting at x has to be a birth so we begin
with that calculation.

Let �δ be the set of vertices of degree > λδ−1. Define Zx, x ∈ {1,2, . . . , n} as
Zx = 1 if the dual contact process {ξ {x}

t : t ≥ 0} starting from x survives for T ′ =
1/λα−1 units of time, and 0 otherwise. We will show EZx ≤ Cλ1+(α−2)(1−δ) for
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some constant C. If T1 is the time for the first event in the dual process, then ET1 ≤
1 and using Markov’s inequality P(T1 > 1/λα−1) < λα−1. So if T1 < 1/λα−1, the
first event must be a birth for Zx to be 1. So for x ∈ �δ ,

P(Zx = 1) ≤ P(T1 > 1/λα−1) + ∑
i>λδ−1

pi

λi

λi + 1

≤ λα−1 + Cλ
∑

i>λδ−1

i−(α−1)

≤ λα−1 + Cλ · λ(α−2)(1−δ).

For x ∈ �c
δ , let w(λ) ≤ Cλ(α−2)(1−δ) be the size-biased probability of having

a vertex of �δ in its neighborhood. If d(x) = i, the expected number of ver-
tices in a radius m around x is at most i · EZm, where Zm is the total progeny
up to mth generation of the branching process with offspring distribution qk =
(k + 1)pk+1/μ ∼ ckα−1. So the expected number of vertices, which are within a
distance m = �(α − 1)/δ�, the smallest integer larger than (α − 1)/δ, from x and
belong to �δ , is

≤
(1/λ)1−δ∑

i=2

pi · i · EZm · Cλ(α−2)(1−δ) ≤ Cλ(α−2)(1−δ).

Using Markov’s inequality the probability of having at least one vertex of �δ

within a distance m from x has the same upper bound as above.
Until we reach �δ , |ξ {x}

t | ≤ Yt where

Yt → Y1 − 1 at rate Yt ,

Yt → Yt + 1 at rate Ytλ · (1/λ)1−δ = Ytλ
δ.

So Yt jumps at rate Yt (1 + λδ) and it jumps to Yt + 1 with probability λδ/(1 +
λδ) < λδ . If T1 < 1/λα−1, the first event in the dual process ξ

{x}
t must be a birth

for Zx to be 1. Let T2m is the time of the 2mth event after the first event. Then
ET2m ≤ 2m/(1 + λδ) and using Markov’s inequality

P(T2m > 1/λα−1) ≤ Cλα−1.

Now if T2m < 1/λα−1 and there is no vertex of �δ within a distance m of x, the
infection starting at x survives for time T ′ only if Yt has at least m up jumps before
hitting 0. If there are ≤ m − 1 up jumps in the first 2m then Yt will hit 0 by T2m,
as Y0 = 2. The probability of this event is

≤ P(B ≥ m), where B ∼ Binomial(2m,λδ),

≤ 22mλmδ ≤ 22mλα−1.
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Combining all three error probabilities, for any x ∈ �c
δ ,

P(Zx = 1) ≤ P(T1 > 1/λα−1) + P(T2m > 1/λα−1)

+ ∑
i≤λδ−1

pi

λi

λi + 1
· Cλ(α−2)(1−δ)

≤ Cλ1+(α−2)(1−δ).

Using an argument similar to one at the end of the proof of Theorem 1

P

(∣∣∣∣∑
x

(Zx − EZx)

∣∣∣∣ > nγ

)
→ 0 as n → ∞

for any γ > 0. Since EZx ≤ Cλ1+(α−2)(1−δ) for all x ∈ {1,2, . . . , n}, if we take
pu = 3Cλ1+(α−2)(1−δ), then

P

(∑
x

Zx ≥ npu

)
→ 0 as n → ∞.

So by making C larger in the definition of pu and using the attractiveness of the
contact process

inf
t≥T ′ P(|ξ1

t | ≤ pun) → 1

as n → ∞.

5. Proof of connectivity and diameter. We conclude the paper with the proof
of Lemma 1.2. We begin with a large deviations result. The fact is well-known, but
the proof is short so we give it for completeness.

LEMMA 5.1. Let X1,X2, . . . be i.i.d., nonnegative with mean μ. If ρ < μ,
then there is a constant γ > 0 so that

P(X1 + · · · + Xk ≤ ρk) ≤ e−γ k.

PROOF. Let φ(θ) = Ee−θX . If θ > 0 then

e−θρkP (X1 + · · · + Xk ≤ ρk) ≤ φ(θ)k.

So we have

P(X1 + · · · + Xk ≤ ρk) ≤ exp
(
k{θρ + logφ(θ)}).

log(φ(0)) = 0 and as θ → 0

d

dθ
log(φ(θ)) = φ′(θ)

φ(θ)
→ −μ.

So logφ(θ) ∼ −μθ as θ → 0, and the result follows by taking θ small. �
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PROOF OF LEMMA 1.2. We will prove the result in the following steps:
Step 1. Let kn = (logn)2. The size of the cluster Cx , starting from x ∈

{1,2, . . . , n}, reaches size kn with probability 1 − o(n−1).
Step 2. There is a B < ∞ so that if the size of Cx reaches size B logn, it will

reach n2/3 with probability 1 − O(n−2).
Step 3. Let ζ > 0. Two clusters Cx and Cy , starting from x and y respectively,

of size n(1/2)+ζ will intersect with probability 1 − o(n−2).
Steps 2 and 3 follow from the proof of Theorem 3.2.2 of Durrett (2007), so it is

enough to do Step 1. Before doing this, note that if d1, . . . , dn are the degrees of
the vertices, and η > 0 then as n → ∞,

P
(

max
1≤i≤n

di > n(1+η)/(α−1)
)

≤ n · P (
d1 > n(1+η)/(α−1)) ∼ Cn−η.

Given α > 3, we choose η > 0 small enough so that (1 + η)/(α − 1) < 1/2.
To prove Step 1, we will expose one vertex at a time. Following the notation

of Durrett (2007), suppose At,Ut and Rt are the sets of active, unexplored and
removed sites respectively at time t in the process of growing the cluster starting
from 1, with R0 = {1}, A0 = {z : 1 ∼ z} and U0 = {1,2, . . . , n} − A0 ∪ R0. At time
τ = inf{t :At = ∅} the process stops. If At 	= ∅, pick it from At in some way
measurable with respect to the process up to that time and let

Rt+1 = Rt ∪ {it },
At+1 = At ∪ {z ∈ Ut : it ∼ z} − {it },
Ut+1 = Ut − {z ∈ Ut : it ∼ z}.

Here |Rt | = t + 1 for t ≤ τ and so C1 = τ + 1. If there were no collisions, then
|At+1| = |At | − 1 + Z where Z has the size biased degree distribution q . Let
qη be the distribution of (Z | Z ≤ n(1+η)/(α−1)). Then on the event {maxi di ≤
n(1+η)/(α−1)}, |At | is dominated by a random walk St = S0 +Z1 +· · ·+Zt , where
S0 = A0 and Zi ∼ qη. Since qk−1 = kpk/μ, we have q0 = q1 = 0 and hence q

η
0 =

q
η
1 = 0. Then St increases monotonically.

If we let T = inf{m :Sm ≥ kn} then

P(|C1| ≤ kn) ≤ P(St − |At | ≥ 4 for some t ≤ T ).(5.1)

As observed above, if n is large, all of the vertices have degree ≤ nβ where β =
(1 + η)/(α − 1) < 1/2. As long as St ≤ 2kn, each time we add a new vertex and
the probability that it is in the active set is at most

γn = 2knn
β∑n

i=1 di − 2knnβ
≤ Cknn

β−1

for large n. Thus the probability of two or more collisions while St ≤ 2kn is ≤
(2kn)

2γ 2
n = o(n−1).
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If ST − ST −1 ≤ kn, then the previous argument suffices, but ST − ST −1 might
be as large as nβ . Letting m > 1/(1−2β), we see that the probability of m or more
collisions is at most

(nβ)m(Cnβ−1)m = o(n−1).

To grow the cluster we will use a breadth first search: we will expose all the
vertices at distance 1 from the starting point, then those at distance 2, etc. When
a collision occurs, we do not add a vertex, and we delete the one with which a
collision has occurred, so two are lost. There is at most one collision while St ≤
2kn. Since S0 ≥ 3, it is easy to see that the worst thing that can happen in terms of
the growth of the cluster is for the collision to occur on the first step, reducing S0
to 1. After this the number of vertices doubles at each step so size kn is reached
before we have gone a distance log2 kn from the starting point.

In the final step we might have a jump Sτ − Sτ−1 ≥ kn and m collisions, but as
long as kn = (logn)2 > 2m we do not lose any ground. In the growth before time
T , each vertex, except for possibly one collision, has added two new vertices to
the active set. From this it is easy to see that the number of vertices in the active
set is at least kn/2 − 2m.

To grow the graph now, we will expose all of the vertices in the current active
set, then expose all of the neighbors of these vertices, etc. Let ε > 0. The proof of
Theorem 3.2.2 in Durrett (2007) shows (see page 78) that if δ is small then until
nδ vertices have been exposed, the cluster growth dominates a random walk with
mean ν − ε. Let J1, J2, . . . be the successive sizes of the active set when these
phases are complete. The large deviations result, Lemma 5.1, implies that there is
a γ > 0 so that

P
(
Ji+1 ≤ (ν − 2ε)Ji | Ji = ji

) ≤ exp(−γji).

Since J1 ≥ (logn)2/2 − 8, it follows from this result that with probability ≥ 1 −
o(n−1), in at most (

1

2
+ ζ

)
logn

log(ν − ε)

steps, the active set will grow to size n(1/2)+ζ . Using the result from Step 3 and
noting that the initial phase of the growth has diameter ≤ log2 kn = O(log logn)

the desired result follows. �

REFERENCES

BERGER, N., BORGS, C., CHAYES, J. T. and SABERI, A. (2005). On the spread of viruses on the
internet. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms
301–310 (electronic). ACM, New York. MR2298278

BERGER, N., BORGS, C., CHAYES, J. T. and SABERI, A. (2009). Weak local limits for preferential
attachment graphs. To appear.

http://www.ams.org/mathscinet-getitem?mr=2298278


2356 S. CHATTERJEE AND R. DURRETT

BOLLOBÁS, B. (2001). Random Graphs, 2nd ed. Cambridge Studies in Advanced Mathematics 73.
Cambridge Univ. Press, Cambridge. MR1864966

CHUNG, F. and LU, L. (2002). The average distances in random graphs with given expected degrees.
Proc. Natl. Acad. Sci. USA 99 15879–15882 (electronic). MR1944974

CHUNG, F. and LU, L. (2003). The average distance in a random graph with given expected degrees.
Internet Math. 1 91–113. MR2076728

COOPER, C. and FRIEZE, A. (2003). A general model of web graphs. Random Structures Algorithms
22 311–335. MR1966545

DURRETT, R. (2007). Random Graph Dynamics. Cambridge Univ. Press, Cambridge. MR2271734
DURRETT, R. and JUNG, P. (2007). Two phase transitions for the contact process on small worlds.

Stochastic Process. Appl. 117 1910–1927. MR2437735
DURRETT, R. and LIU, X. F. (1988). The contact process on a finite set. Ann. Probab. 16 1158–1173.

MR942760
DURRETT, R. and SCHONMANN, R. H. (1988). The contact process on a finite set. II. Ann. Probab.

16 1570–1583. MR958203
GÓMEZ-GARDEÑES, J., LATORA, V., MORENO, Y. and PROFUMO, E. (2008). Spreading of sexu-

ally transmitted diseases in heterosexual populations. Proc. Natl. Acad. Sci. 105 1399–1404.
HARRIS, T. E. (1974). Contact interactions on a lattice. Ann. Probab. 2 969–988. MR0356292
JANSON, S., ŁUCZAK, T. and RUCINSKI, A. (2000). Random Graphs. Wiley, New York.

MR1782847
LIGGETT, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes.

Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences] 324. Springer, Berlin. MR1717346

MOUNTFORD, T. S. (1993). A metastable result for the finite multidimensional contact process.
Canad. Math. Bull. 36 216–226. MR1222537

NEWMAN, M. E. J., STROGATZ, S. H. and WATTS, D. J. (2001). Random graphs with arbitrary
degree distributions and their applications. Phys. Rev. E. 64 026118.

NEWMAN, M. E. J., STROGATZ, S. H. and WATTS, D. J. (2002). Random graph models of social
networks. Proc. Nat. Acad. Sci. 99 2566–2572.

PASTOR-SATORRAS, R. and VESPIGNANI, A. (2001a). Epidemic spreading in scale-free networks.
Phys. Rev. Letters 86 3200–3203.

PASTOR-SATORRAS, R. and VESPIGNANI, A. (2001b). Epidemic dynamics and endemic states in
complex networks. Phys. Rev. E. 63 066117.

PASTOR-SATORRAS, R. and VESPIGNANI, A. (2002). Epidemic dynamics in finite size scale-free
networks. Phys. Rev. E. 65 035108(R).

VAN DEN ESKER, H., VAN DER HOFSTAD, R., HOOGHIEMSTRA, G. and ZNAMENSKI, D. (2005).
Distances in random graphs with infinite mean degrees. Extremes 8 111–141 (2006). MR2275914

VAN DER HOFSTAD, R., HOOGHIEMSTRA, G. and ZNAMENSKI, D. (2007). Distances in random
graphs with finite mean and infinite variance degrees. Electron. J. Probab. 12 703–766 (elec-
tronic). MR2318408

OPERATIONS RESEARCH

AND INFORMATION ENGINEERING

RHODES HALL

CORNELL UNIVERSITY

ITHACA, NEW YORK 14853
USA
E-MAIL: sc499@cornell.edu

MATHEMATICS

MALOTT HALL

CORNELL UNIVERSITY

ITHACA, NEW YORK 14853
USA
E-MAIL: rtd1@cornell.edu

http://www.ams.org/mathscinet-getitem?mr=1864966
http://www.ams.org/mathscinet-getitem?mr=1944974
http://www.ams.org/mathscinet-getitem?mr=2076728
http://www.ams.org/mathscinet-getitem?mr=1966545
http://www.ams.org/mathscinet-getitem?mr=2271734
http://www.ams.org/mathscinet-getitem?mr=2437735
http://www.ams.org/mathscinet-getitem?mr=942760
http://www.ams.org/mathscinet-getitem?mr=958203
http://www.ams.org/mathscinet-getitem?mr=0356292
http://www.ams.org/mathscinet-getitem?mr=1782847
http://www.ams.org/mathscinet-getitem?mr=1717346
http://www.ams.org/mathscinet-getitem?mr=1222537
http://www.ams.org/mathscinet-getitem?mr=2275914
http://www.ams.org/mathscinet-getitem?mr=2318408
mailto:sc499@cornell.edu
mailto:rtd1@cornell.edu

	Introduction
	Sketch of the proof of Theorem 1

	Persistence of infection at stars
	Density of infected stars
	Proof of Theorem 1

	Upper bound in Theorem 2
	Proof of connectivity and diameter
	References
	Author's Addresses

